(α, k)-Anonymity: An Enhanced k-Anonymity Model for Privacy-Preserving Data Publishing
نویسندگان
چکیده
Privacy preservation is an important issue in the release of data for mining purposes. The k-anonymity model has been introduced for protecting individual identification. Recent studies show that a more sophisticated model is necessary to protect the association of individuals to sensitive information. In this paper, we propose an (α, k)-anonymity model to protect both identifications and relationships to sensitive information in data. We discuss the properties of (α, k)-anonymity model. We prove that the optimal (α, k)anonymity problem is NP-hard. We first present an optimal globalrecoding method for the (α, k)-anonymity problem. Next we propose a local-recoding algorithm which is more scalable and result in less data distortion. The effectiveness and efficiency are shown by experiments. We also describe how the model can be extended to more general cases.
منابع مشابه
Enhanced P-Sensitive K-Anonymity Models for Privacy Preserving Data Publishing
Publishing data for analysis from a micro data table containing sensitive attributes, while maintaining individual privacy, is a problem of increasing significance today. The k-anonymity model was proposed for privacy preserving data publication. While focusing on identity disclosure, k-anonymity model fails to protect attribute disclosure to some extent. Many efforts are made to enhance the k-...
متن کاملA Novel Anonymity Algorithm for Privacy Preserving in Publishing Multiple Sensitive Attributes
Publishing the data with multiple sensitive attributes brings us greater challenge than publishing the data with single sensitive attribute in the area of privacy preserving. In this study, we propose a novel privacy preserving model based on k-anonymity called (α, β, k)-anonymity for databases. (α, β, k)anonymity can be used to protect data with multiple sensitive attributes in data publishing...
متن کامل(p+, α)-sensitive k-anonymity: A new enhanced privacy protection model
Publishing data for analysis from a microdata table containing sensitive attributes, while maintaining individual privacy, is a problem of increasing significance today. The k-anonymity model was proposed for privacy preserving data publication. While focusing on identity disclosure, k-anonymity model fails to protect attribute disclosure to some extent. Many efforts are made to enhance the kan...
متن کاملA Survey of Privacy Preserving Data Publishing using Generalization and Suppression
Nowadays, information sharing as an indispensable part appears in our vision, bringing about a mass of discussions about methods and techniques of privacy preserving data publishing which are regarded as strong guarantee to avoid information disclosure and protect individuals’ privacy. Recent work focuses on proposing different anonymity algorithms for varying data publishing scenarios to satis...
متن کاملEnhancing Informativeness in Data Publishing while Preserving Privacy using Coalitional Game Theory
k-Anonymity is one of the most popular conventional techniques for protecting the privacy of an individual. The shortcomings in the process of achieving k-Anonymity are presented and addressed by using Coalitional Game Theory (CGT) [1] and Concept Hierarchy Tree (CHT). The existing system considers information loss as a control parameter and provides anonymity level (k) as output. This paper pr...
متن کامل